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Abstract: This paper describes the use of unsupervised adaptive resonance theory ART2 neural

networks for recognizing patterns in statistical process control charts. To improve the classi® cation

accuracy, three schemes are proposed. The ® rst scheme involves using information on changes

between consecutive points in a pattern. The second scheme modi® es the ART2 vigilance parameter

during training. The third scheme merges class neurons representing the same class after training.
The paper gives results which demonstrate the improvements achieved.
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1 INTRODUCTION

Control charts are employed in statistical process control

(SPC) to assess whether a process is functioning

correctly. A control chart can exhibit six main types of

patterns: normal, cyclic, increasing trend, decreasing

trend, upward shift and downward shift [1, 2]. Figure 1
depicts these six pattern types. Correct identi® cation of

these patterns is important to achieving early detection

of potential problems and maintaining the quality of

the process under observation.

DiŒerent arti ® cial intelligence techniques such as rule-
based expert systems and neural networks have been

implemented for control chart pattern recognition. An

expert system was developed by Swift for the task [3].

Cheng [4] used special templates to classify control

chart patterns in an expert system. Rule-based expert

systems contain explicit information. Therefore, the
rules can be modi® ed easily to re¯ ect new information.

Where necessary, such systems can provide explanations

to the human operator regarding the decisions that they

have reached. The main drawback with rule-based

systems is the di� culty in obtaining the rules to be
embedded in them. This is often referred to as the

knowledge acquisition bottleneck.

Supervised neural networks have also been applied to

control chart pattern recognition [5 ± 8]. The main

advantage of using supervised neural networks is that

explicit rules and templates are not required. Learning

is undertaken automatically in a training phase with
representative examples [9]. Although supervised neural

networks are not capable of providing explicit explana-

tions for their decisions, their autonomous learning

capability makes them suitable for problems where

little a priori knowledge is available. There is one
signi® cant disadvantage with using supervised neural

networks: they are not suitable for continuous, incre-

mental on-line training owing to a problem known as

the stability and plasticity problem [10].
When a trained supervised neural network is required

to learn new data, it tends to lose some of the knowledge

obtained from previous training. While learning the

new data set (i.e. being plastic), the network may forget

what it previously learnt (i.e. it is unstable). To train a

supervised neural network to learn additional data, a

new training set is required comprising those data and
the data already learnt by the network. The network

then has to be retrained with this new training data

set, which means that it has to be taken oŒline for

training.

This paper describes the application of the ART2
network [10] to control chart pattern classi® cation. It

has been demonstrated [10] that ART2 networks are

both plastic and stable in that they can learn new data

without erasing currently stored information. Thus
ART2 networks are suitable for continuous, incremental

on-line training. The architecture and dynamics of a

basic ART2 implementation are ® rst explained.

Classi® cation results with this particular version of

ART2 are presented. Three schemes for improving the

classi® cation performance are then detailed together

with the comparative results obtained.
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2 ART2 NETWORKS FOR CONTROL CHART

PATTERN RECOGNITION

2.1 Architecture of an ART2 network

The architecture of an ART2 network is delineated in

Fig. 2. In this particular con® guration, the f̀eature
representation’ ® eld (F1) consists of four loops. An

input pattern will be circulated in the lower two loops

® rst. Inherent noise in the input pattern will be sup-

pressed [this is controlled by the parameters a and b

and the feedback function f (¢)] and prominent features
in it will be accentuated. Then the enhanced input

pattern will be passed to the upper two F1 loops and

will excite the neurons in the `category representation’

® eld (F2) via the bottom-up weights. The `established

class’ neuron in F2 that receives the strongest stimulation

will ® re. This neuron will read out a t̀op-down expecta-
tion’ in the form of a set of top-down weights sometimes

referred to as class templates. This top-down expectation

will be compared against the enhanced input pattern by

the vigilance mechanism. If the vigilance test is passed,

the top-down and bottom-up weights will be updated
and, along with the enhanced input pattern, will circulate

repeatedly in the two upper F1 loops until stability is

achieved. The time taken by the network to reach a

stable state depends on how close the input pattern is

to passing the vigilance test. If it passes the test comfor-

tably, i.e. the input pattern is quite similar to the top-
down expectation, stability will be quick to achieve.

Otherwise, more iterations are required. After the top-

down and bottom-up weights have been updated, the

current ® ring neuron will become an established class

neuron. If the vigilance test fails, the current ® ring
neuron will be disabled. Another search within the

remaining established class neurons in the F2 layer will

be conducted. If none of the established class neurons

has a top-down expectation similar to the input pattern,

an unoccupied F2 neuron will be assigned to classify the
input pattern. This procedure repeats itself until either all

the patterns are classi® ed or the memory capacity of F2

has been exhausted.

The basic ART2 training algorithm can be summar-

ized as follows:

(a) initializing the top-down and bottom-up long-term

memory traces;

(b) presenting an input pattern from the training data

set to the network;

(c) triggering the neuron with the highest total input in
the category representation ® eld;

(d) checking the match between the input pattern and

the exemplar in the top-down ® lter (long-term

memory) using a vigilance parameter;

Fig. 1 Main types of control chart patterns
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(e) starting the learning process if the mismatch is
within the tolerance level de® ned by the vigilance

parameter and then going to step (h), otherwise

moving to the next step;

(f ) disabling the current active neuron in the category

representation ® eld and returning to step (c), going
to step (g) if all the established classes have been tried;

(g) establishing a new class for the given input pattern;

(h) repeating steps (b) to (g) until the network stabilizes

or a speci® ed number of iterations is completed.

In the recall mode, only steps (b), (c), (d) and (h) will be
utilized.

The equations governing the operation of an ART2

network can be found in the Appendix.

2.2 Classi® cation results

The ART2 network described in the previous section has

a set of parameters which are adjustable by the user.

Fig. 2 Architecture of an ART2 network
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They are a, b, c, d, ³ and ». The ® rst ® ve parameters, a, b,

c, d and ³, are responsible for suppressing noise and

enhancing the major features in the input pattern and »
is the vigilance parameter which determines the sensitiv-
ity of the classi® er to pattern diŒerences. There is no

standard method for deciding the values of these param-

eters. A series of classi® cation experiments were con-

ducted using networks with diŒerent combinations of

parameter values. The aim of the experiments was to
® nd a good combination of values for the control chart

classi® cation problem. Each network was fed a training

data set comprising 366 patterns and a test data set

with 132 patterns in each of the six categories. A pattern

is a time series of 60 data points. The generation of the

diŒerent types of patterns for the training and test data
sets is described in reference [5]. The results are presented

in Table 1. A good classi® er should have high classi® ca-

tion accuracies with both the training and the test data

sets and should involve only a small number of classi® ca-

tion neurons by comparison with the number of patterns
in the data sets.

The values of the parameters used in network 1 were

chosen according to the recommendations in reference

[10]. However, this combination of network parameters,

as can be seen in Table 1, did not yield high classi® cation
accuracies.

For network 2, the values of a and b were much higher

than those for network 1 while all the other parameters

remained the same. The result was that both the

classi® cation accuracies and the number of established

classi® cation neurons increased slightly. This showed
that increasing the parameters a and b was not an eŒec-

tive way of improving the classi® cation accuracy, nor

was it an eŒective method for reducing the total

number of class neurons needed for the classi® cation

task.
In network 3, the values of a and b were set low. A

signi® cant reduction in classi® cation neurons was

obtained compared with network 1 and network 2.

Although the number of neurons decreased almost by

one-half, the classi® cation accuracy only deteriorated

slightly compared with network 2.

Networks 4 and 5 had a and b with diŒerent values. In

network 4, a was smaller than b and, in network 5, b was
smaller than a. This approach did not seem to oŒer better

performances than the other combinations of a and b.

The results obtained for networks 6 and 7 show the

eŒect of adjusting the balance between the parameters

c and d. It was discovered that if the value for c was
raised while the value for d was decreased as in network

6, the classi® cation accuracy dropped signi® cantly

although the number of established neurons was

reduced. With d taking a large value and c a much

reduced value, network 7 had a higher classi® cation

accuracy while suŒering a small increase in the number
of established class neurons. Nevertheless, the classi® ca-

tion accuracy attained by network 7 was still too low for

it to be adopted as a control chart pattern classi® er.

Network 8 was an attempt to improve the classi® ca-

tion accuracy by raising the vigilance parameter. The
classi® cation accuracy did increase as a result, but at

the expense of having many more classi® cation neurons.

Network 9 had a larger value for ³. The classi® cation

accuracy again improved. However, this was achieved

with 210 classi® cation neurons which was far too many
for the size of the training set. As there were 366 patterns

in the training data set, on average each neuron in the

network classi® ed only 1.7 patterns. As an attempt to

address this problem, network 10 was given a smaller

vigilance parameter. The number of established classi® -

cation neurons was almost halved and, although the
classi® cation accuracies decreased as well, they were

still comparable to the accuracies achieved with super-

vised neural networks [11].

Thus, from Table 1, the following observations can be

made about the choice of parameters of ART2 networks
for control chart pattern recognition: (a) making a and b

diŒerent from each other does not have too much eŒect

on the network performance Ð it is useful to keep both a

and b low; (b) d should be signi® cantly larger than c; (c) ³

Table 1 Classi® cation results for various ART2 networks

Classi ® cation accuracy

Network a b c d ³ » Neurons Train data Test data

1 10.0 10.0 0.1 0.9 0.01 0.996 45 63.39% 60.61%
2 50.0 50.0 0.1 0.9 0.01 0.996 46 64.21% 62.12%
3 1.0 1.0 0.1 0.9 0.01 0.996 27 62.57% 59.85%
4 1.0 10.0 0.1 0.9 0.01 0.996 41 62.30% 61.36%
5 10.0 1.0 0.1 0.9 0.01 0.996 35 60.11% 57.58%
6 10.0 10.0 0.3 0.7 0.01 0.996 17 42.62% 40.15%
7 10.0 10.0 0.01 0.99 0.01 0.996 25 66.67% 69.70%
8 10.0 10.0 0.01 0.99 0.01 0.999 117 83.88% 74.24%
9 10.0 10.0 0.01 0.99 0.1 0.999 210 90.53% 84.22%

10 10.0 10.0 0.01 0.99 0.1 0.992 127 87.90% 82.35%

The training data set contains 366 vectors. The test data set contains 132 vectors. » is the vigilance parameter; neurons, the number of neurons estab-
lished after training has stabilized; train data, the accuracy of the ART2 network when tested with the training data set; test data, the accuracy of the
ART2 network when tested with the test data set.
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in¯ uences the sensitivity of the overall network Ð it

should not be larger than 1, otherwise each input pattern

would require a classi® cation neuron which would make

the task of the classi® er trivial; (d) the vigilance param-

eter should be kept high to ensure that diŒerent patterns
are separated into distinct classes.

The general validity of observations (c) and (d) can

readily be con® rmed by referring to the roles of param-

eters ³ and » to which those observations relate (see

equation (13) and relation (18) in the Appendix). Because
the functions of parameters a, b, c and d are more

complex, observations (a) and (b) should be regarded

as applicable principally to the test cases presented in

Table 1. However, with ART2, where, as mentioned

previously, there is no standard method for parameter

selection, these tentative observations can still prove
helpful as starting points for the network designer.

2.3 New input presentation scheme

All the ART2 networks detailed in Table 1 used solely
the input patterns in the process of classi® cation. The

performance might improve if the input patterns as

well as their ® rst-order diŒerences were employed in

the classi® cation process because this would make use

of the contextual information in the relationship between
the neighbouring elements of an input pattern. When an

input pattern is presented, its ® rst `derivative’ would be

extracted and then added to the input pattern before it

is given to the ART2 network for classi® cation.

Consider the following input pattern:

x ˆ ‰x1; x2; x3; x4ŠT

Its ® rst-order diŒerence vector is taken as

x0 ˆ ‰x2 ¡ x1; x3 ¡ x2; x4 ¡ x3ŠT

The overall input pattern presented to the network
would be

xnew ˆ ‰x1; x2; x3; x4; x2 ¡ x1; x3 ¡ x2; x4 ¡ x3ŠT

Therefore, if the original input pattern had n elements,

the ® nal pattern would have 2n ¡ 1 elements.

The results for a group of networks trained using this

scheme are shown in Table 2. The other network param-

eters were exactly the same as those used for the net-
works described in Table 1.

The results for the ® rst ® ve networks in Table 2 again

con® rm that variations in parameters a and b did not

have much eŒect on the overall classi® cation perfor-

mances. This is consistent with the observation made
on the ® rst ® ve networks in Table 1. Networks 5 to 8

underline the point that, to achieve good accuracy in

control chart pattern classi® cation, parameter d should

be larger than parameter c. As recorded in Table 2,

among networks 5 to 8, the network demonstrating the

best classi® cation and generalization capability has
c ˆ 0:01 and d ˆ 0:99. This agrees with ® ndings reported

earlier for the networks in Table 1.

Networks 8 and 9 in Table 2 show that, when ³ was

increased from 0.01 to 0.1, the sensitivity of the classi® er

to diŒerent pattern classes was enhanced. Nevertheless,
the number of established class neurons increased with

³ as observed previously. Also, by reducing » slightly, a

degree of control of the neuron number was achieved.

Overall, network 9 in Table 2 gave the best classi® cation

accuracies.
Comparing Tables 1 and 2, it can be seen that the

average classi® cation accuracy of the networks in Table

2 is higher than that of the networks in Table 1. Also,

the average number of established class neurons of the

networks in Table 2 is smaller. Therefore, using the

scheme proposed in this section, an ART2 network can
attain better generalization and accuracy in control

chart pattern classi® cation.

A disadvantage with this scheme is that the input

patterns are higher in dimension than those used by the

networks in Table 1. Consequently, the training and
processing times are longer. Typically, the networks in

Table 2 required twice as long to train and to process

input patterns as the networks in Table 1. This could

be a serious drawback in a time-critical application.

Table 2 Classi® cation results with augmented input patterns

Classi ® cation accuracy

Network a b c d ³ » Neurons Train data Test data

1 10.0 10.0 0.1 0.9 0.01 0.996 35 68.96% 65.34%
2 50.0 50.0 0.1 0.9 0.01 0.996 38 69.08% 65.77%
3 1.0 1.0 0.1 0.9 0.01 0.996 20 64.57% 63.98%
4 1.0 10.0 0.1 0.9 0.01 0.996 37 65.48% 59.97%
5 10.0 1.0 0.1 0.9 0.01 0.996 28 63.56% 60.39%
6 10.0 10.0 0.3 0.7 0.01 0.996 15 50.03% 46.65%
7 10.0 10.0 0.01 0.99 0.01 0.996 19 70.88% 69.78%
8 10.0 10.0 0.01 0.99 0.01 0.999 69 89.93% 85.46%
9 10.0 10.0 0.01 0.99 0.1 0.999 158 91.22% 90.65%

10 10.0 10.0 0.01 0.99 0.1 0.992 73 90.35% 85.69%
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3 MODIFICATIONS TO THE ART2 LEARNING

RULE

3.1 Decreasing the vigilance parameter in the course of

training

With the ART2 architecture described in Section 2, too

many classi® cation neurons were needed to obtain good

accuracies. As already noted, the ratio of classi® cation

neurons and patterns to be classi® ed approached the
trivial value of 1:1.

For an ìntelligent’ self-organizing classi® er, once the

representative class templates have been established,

the discriminating criterion should be lowered to achieve

good generalization. Therefore, the proposed training

scheme involves decreasing the vigilance parameter
gradually in the course of training. At the beginning of

the training process, the vigilance parameter is set at a

high value so that all input patterns with diŒering

prominent features will cause new classi® cation neurons

to be formed. This establishes the most representative
class templates. The vigilance parameter is allowed to

decrease smoothly as training progresses to help each

established classi® cation neuron to classify a larger

number of similar patterns.

The proposed modi® cation to the ART2 training
rule ± scheme operates as follows. First, the user de® nes

an initial value (»_start) for the vigilance parameter (»)

before training commences. Then, whenever a new

input is presented the vigilance parameter is decreased

by ¢» until it reaches a prede® ned end value (»_end).

Subsequently, the vigilance parameter will remain at

»_end until the training phase is ® nished. In the test

phase, the vigilance parameter will take the mean value

(»_start ‡»_end)/2. The performances of a set of ART2

networks trained using this scheme are shown in Table 3.

3.2 Classi® cation results for monotonically decreasing

vigilance parameter scheme

Parameters a, b, c, d and ³ for networks 1 to 4 in Table 3

were the same as for the best network in Table 1 (net-

work 9). The values for »_start and »_end were chosen

so that cases with vigilance parameter values above

and below the constant vigilance of network 9 in Table

1 could be tested. The vigilance parameter decrement
(¢») was the same for the four networks.

Although the numbers of class neurons obtained for

the four networks were smaller than for network 9 of

Table 1, the accuracies were also much lower. These

results could be attributed to the lower eŒective values
of the vigilance parameter ». In the case of network 2,

although the value of »_start was higher than the con-

stant vigilance parameter for network 9 of Table 1, the

vigilance parameter quickly decreased to a value lower

than that for the latter network. Thus, eŒectively, the

new network operated with a reduced vigilance overall
and thus produced a poorer accuracy.

In networks 5, 6, 7, 8 and 9, the values of a, b, c, d and ³
were varied from those of the best network in Table 1.

Network 5, with ³ equal to one-tenth of the value for

network 9 in Table 1, had the smallest number of
neurons. However, the classi® cation acccuracies were

still low.

Comparing networks 6, 7 and 8, which had the same a,

b, c and d values as for network 1 in Table 1, again

reveals the eŒect of adopting higher vigilance parameter
values. Network 8 with the highest vigilance among the

three networks also produced the best performance,

well exceeding that of network 1 in Table 1.

Performance improved with network 9, which had the

same parameters as network 5, except that ¢» was now

lower. As ¢» controls the rate of decrease in vigilance
during training, this eŒectively means a higher average

vigilance was obtained with network 9.

In network 10, the value of ¢» was further reduced.

This gave the best of all the results presented in Table 3.

Networks 8, 9 and 10 in Table 3 all had better test
accuracies and fewer class neurons than the best original

ART2 network (network 9 in Table 1). This shows that

the proposed decreasing vigilance scheme can improve

the performance of ART2. This is due to the possibility

Table 3 Classi® cation results with the proposed learning rule modi® cation

Classi ® cation accuracy

Network a b c d ³ »_start »_end ¢» Neurons Train data Test data

1 10.0 10.0 0.01 0.99 0.1 0.993 0.99 0.00001 72 73.26% 65.41%
2 10.0 10.0 0.01 0.99 0.1 0.9999 0.996 0.00001 91 76.42% 54.72%
3 10.0 10.0 0.01 0.99 0.1 0.998 0.996 0.00001 94 77.15% 53.44%
4 10.0 10.0 0.01 0.99 0.1 0.996 0.99 0.00001 75 64.09% 59.50%
5 10.0 10.0 0.01 0.99 0.01 1.0 0.996 0.00005 30 62.21% 58.42%
6 10.0 10.0 0.1 0.9 0.1 0.99 0.98 0.00005 58 70.61% 63.23%
7 10.0 10.0 0.1 0.9 0.1 0.99 0.97 0.0001 44 75.39% 71.11%
8 10.0 10.0 0.1 0.9 0.1 0.996 0.99 0.00001 62 90.34% 89.99%
9 10.0 10.0 0.01 0.99 0.01 0.9999 0.996 0.00001 73 91.24% 90.52%

10 10.0 10.0 0.01 0.99 0.1 0.9999 0.996 0.000005 96 92.35% 91.67%

»_start is the starting vigilance parameter when training commences. »_end is the ® nishing vigilance parameter when training ends. ¢» is the value by
which the vigilance parameter is reduced when a new input is presented.
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of using high vigilance parameter values to increase
accuracy without expanding the number of class

neurons, unlike in the ® xed vigilance case.

It has been noted that the performances of the other

networks in Table 3 were inferior to that of network 9
in Table 1, the best original ART2 network. This under-

lines a requirement common to all ART2 networks: their

parameters have to be correctly selected to achieve good

results, which was the case with network 9 in Table 1, but

not with the poorly performing networks in Table 3.

4 POST-TRAINING REDUCTION OF CLASS
NEURONS

Although good classi® cation results were achieved with

the scheme detailed in Section 3, the number of class
neurons established at the end of training is still high

for most cases. To solve this problem, a method of

reducing the number of established class neurons while

maintaining good levels of accuracy is described in this
section. The proposed method is to be applied on com-

pletion of training. It involves `merging’ class neurons

which seem to represent the same class. This can be

done by comparing the template vectors of the neurons

against one another using the vigilance mechanism. A

neuron would be considered ® t to be merged with
another neuron, if, treating its weight vector as the

input pattern, it passed the vigilance test against the
class template of the other neuron. The same procedure

is repeated for all the class neurons at the end of a train-

ing session until no further merging is possible. The

vigilance parameter used in this merging process has
the same value as at termination of training.

Tables 4 and 5 show the results of applying this

class neuron merging method to the original ART2

network. Note that the numbers of class neurons were

reduced in most cases although this was also accompa-

nied by a decrease in classi® cation accuracy as can be
expected.

5 CONCLUSIONS

This paper has described the application of ART2
networks to control chart pattern classi® cation. Three

schemes have been proposed to improve the performance

of the basic ART2 network. All schemes preserve the

ART2 architecture and the essence of the ART2 learning
rule. As far as the authors are aware, there have not been

other attempts at improving the ART2 network without

radically aŒecting the ART2 paradigm. The ® rst scheme

involving adding rate information to the input pattern

gave good classi® cation accuracies but lengthened train-

ing and processing times. The next scheme related to the
learning rule of ART2, in particular the operation of the

Table 4 Classi® cation results for various ART2 networks after class merging

Classi ® cation accuracy

Network a b c d ³ » Neurons Train data Test data

1 10.0 10.0 0.1 0.9 0.01 0.996 32 60.41% 56.72%
2 50.0 50.0 0.1 0.9 0.01 0.996 36 59.23% 57.38%
3 1.0 1.0 0.1 0.9 0.01 0.996 25 58.76% 55.27%
4 1.0 10.0 0.1 0.9 0.01 0.996 33 57.92% 56.09%
5 10.0 1.0 0.1 0.9 0.01 0.996 28 52.82% 49.28%
6 10.0 10.0 0.3 0.7 0.01 0.996 16 42.62% 39.31%
7 10.0 10.0 0.01 0.99 0.01 0.996 23 62.87% 64.22%
8 10.0 10.0 0.01 0.99 0.01 0.999 71 80.29% 76.36%
9 10.0 10.0 0.01 0.99 0.1 0.999 89 85.34% 80.73%

10 10.0 10.0 0.01 0.99 0.1 0.992 72 82.25% 78.64%

Table 5 Classi® cation results with the proposed learning rule modi® cation after class merging

Classi ® cation accuracy

Network a b c d ³ »_start »_end ¢» Neurons Train data Test data

1 10.0 10.0 0.01 0.99 0.1 0.993 0.99 0.00001 56 60.48% 55.82%
2 10.0 10.0 0.01 0.99 0.1 0.9999 0.996 0.00001 78 65.25% 41.76%
3 10.0 10.0 0.01 0.99 0.1 0.998 0.996 0.00001 84 73.50% 41.67%
4 10.0 10.0 0.01 0.99 0.1 0.996 0.99 0.00001 59 63.34% 42.03%
5 10.0 10.0 0.01 0.99 0.01 1.0 0.996 0.00005 24 63.39% 53.79%
6 10.0 10.0 0.1 0.9 0.1 0.99 0.98 0.00005 57 68.27% 67.56%
7 10.0 10.0 0.1 0.9 0.1 0.99 0.97 0.0001 34 64.52% 51.28%
8 10.0 10.0 0.1 0.9 0.1 0.996 0.99 0.00001 45 69.25% 57.11%
9 10.0 10.0 0.01 0.99 0.01 0.9999 0.996 0.00001 48 78.28% 77.89%

10 10.0 10.0 0.01 0.99 0.1 0.9999 0.996 0.000005 64 86.59% 84.66%
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vigilance mechanism. With this scheme, the vigilance

parameter changed during training. This was designed

to increase classi® cation accuracies as well as controlling

the expansion in the number of class neurons. The ® rst of

these aims was achieved although the number of class
neurons was still high relative to the number of

patterns to be classi® ed. The third scheme was to be

applied post-training to reduce the number of class

neurons by merging neurons that represent the same

class. This scheme produced the expected decrease in
neurons but also a deterioration in classi® cation accura-

cies. There clearly is a trade-oŒbetween accuracy and

required number of class neurons. Nevertheless, the

accuracies achieved with the best ART2 network (Net-

work 9 in Table 1, Network 9 in Table 2 and Network

10 in Table 3) were comparable with those obtained
with supervised networks. The main advantage of

ART2 networks, however, is that they do not suŒer

from the stability ± plasticity problem of supervised net-

works and thus are more suitable for continuous on-

line learning of the classi® cation task.
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APPENDIX

The dynamics and learning mechanism of ART2

Network dynamics

The dynamics of the ART2 network illustrated in Fig. 2

is controlled by the following set of equations:

w0
i ˆ I i ‡ au0

i …1†

x0
i ˆ w0

i

jjW 0jj …2†

v0
i ˆ f …x0

i† ‡ bf …q0
i† …3†

u0
i ˆ v0

i

jjV 0jj
…4†

p0
i ˆ u0

i …5†

q0
i ˆ p0

i …6†

wi ˆ q0
i …7†

xi ˆ wi …8†

vi ˆ f …xi† ‡ bf …qi† …9†

ui ˆ vi

jjV jj
…10†

pi ˆ ui ‡
X

j

g…Yj†zji …11†

qi ˆ pi

jjPjj …12†

Ii is the ith input to the network. The symbol jjX jj
represents the L2 norm of vector X with components
xi. The output of the jth neuron in the classi® cation

layer is denoted by g…Yj†. The function f …¢† in equations

(3) and (9) is a non-linear function, the purpose of

which is to suppress noise in the input pattern. The

de® nition of f …¢† is

f …x† ˆ
0

x

if 0 4 x < ³

if x 5 ³

»
…13†

where ³ is a user-de® ned parameter between 0 and 1.
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Learning mechanism of ART2

When an input pattern is applied to the ART2 network,
it will pass through the four loops constituting F1 and

then stimulate the classi® cation neurons in F2. The

total excitation received by the jth neuron in the

classi® cation layer is equal to Tj where

Tj ˆ
X

i

pizij …14†

The neuron that receives the strongest excitation will ® re
by generating an output of constant value d. Therefore,

for the winning neuron J, g…YJ† equals d. When a

winning neuron is determined, the value d will be used

to multiply the winning top-down expectation zJi. When
the winning neuron ® res, all the other neurons are inhib-

ited from ® ring and produce zero top-down expectation.

Thus, if J is the ® ring neuron, equation (11) becomes

pi ˆ ui ‡ dzJi …15†

For other neurons, the equation simpli® es to

pi ˆ ui …16†

The top-down expectation pattern is combined with

the enhanced input pattern at point ri before they enter

the vigilance test. From Fig. 2, ri is given by

ri ˆ
q0

i ‡ cpi

jjQ0jj ‡ jjcPjj …17†

The vigilance test fails and the ® ring neuron will be reset

if the following condition is true:

»

jjRjj > 1 …18†

where » is the vigilance parameter.

On the other hand, if the vigilance test is passed (that

is, the current input pattern can be accepted as a member

of the class represented by the ® ring neuron), the top-

down weights zji and the bottom-up weights zij are

updated so that the special features present in the current
input pattern can be incorporated into the class exemplar

represented by the ® ring neuron. The updating equations

are as follows:

d

dt
zji ˆ d…pi ¡ zji† …19†

d

dt
zij ˆ d…pi ¡ zij† …20†

According to reference [10], all the top-down weights

should be initialized with the value 0 at the beginning

of the learning process:

zji…0† ˆ 0 …21†

This is to prevent a neuron from being reset when it

is used to classify an input pattern for the ® rst time

[10].

The bottom-up weights are initialized as follows:

zij…0† ˆ
1

…1 ¡ d†
�����
M

p …22†

where M is the number of neurons in the input layer. This

number is equal to the dimension of the input vectors.

Equation (22) ensures that, after all the neurons with
top-down expectations similar to the input pattern

have been searched, the input pattern can easily access

a previously uncommitted neuron [10].
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